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A technique currently under study for the detection of ultrahigh energy cosmic ray
neutrinos involves the measurement of radio emissions from the electromagnetic
shower generated by the neutrino in a large volume of naturally occurring dielectric
such as the Antarctic ice cap or salt domes� The formation of an electron excess
in the shower leads to the the emission of coherent Cherenkov radiation� an e�ect
similar to the generation of wake�elds in dielectric loaded structures� We have
used the �nite di�erence time domain �FDTD� wake�eld code ARRAKIS to model
coherent Cherenkov radiation �elds from high energy showers� we present as an
example calculationsof expected signals in a proof of principle experimentproposed
for the Fermilab Main Injector�

� Introduction� Radio Cherenkov Radiation and Wake�elds

Optical Cherenkov radiation from charged particles has been used for many
years as a detection technique in elementary particle and cosmic ray physics��

The observation that a high energy electromagnetic shower will develop an
electron excess due to Compton scattering of atomic electrons by shower pho�
tons and annihilation in �ight of positrons indicates that coherent Cherenkov
radiation will be produced by a shower as well�� At very high energies co�
herent emissions in the radio regime will dominate the incoherent Cherenkov
component���� making this technique attractive for detection of very high en�
ergy cosmic rays� An experiment to measure high energy neutrinos using
this e�ect is currently in progress using the Antarctic icecap as the radiator
medium��

Coherent Cherenkov radiation from particle beams has also been under
study by the accelerator community both as a source of instabilities in conven�
tional machines and as a possible power source for future high energy acceler�
ators� This radiation is referred to as the wake�eld of the beam� Of particu�
lar relevance to the detection of radio emissions from high energy cosmic ray
showers is the experimental and computational work on dielectric structure
wake�elds at ANL��

Coherent Cherenkov radiation at microwave frequencies has been measured
using a probe beam to diagnose the wake potential and by direct rf power
measurements using a coupling port and diode detector� Figure � shows a plot
of measured rf power vs charge for a ��	 GHz dielectric wake�eld structure� The
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scaling of wake�eld rf power with Q� is as expected from coherent radiation�
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Figure �	 AWA measurementsof rf power vs charge in a 
�� GHz dielectric structure� showing
the Q� scaling expected from coherent radiation� The scatter in the data is due to shot�to
shot bunch length uctuations�

There are also some di�erences between dielectric device wake�elds and
emissions from showers which will require investigation in dedicated experi�
ments at high energy accelerators� A dielectric wake�eld device is a resonant
structure due to the presence of the outer conducting boundaries� Thus the
Cherenkov radiation spectrum is discrete� driving only the TM�n modes of
the structure 
with an axisymmetric beam aligned with the device axis�� The
beam passes through a vacuum channel rather than directly through the di�
electric� Most importantly� there is no development of charge excess� an e�ect
which requires further experimental study using high energy beams�

Diagnostics for the shower experiment will also require di�erent measure�
ment techniques than are used for laboratory wake�eld device measurements�
Broadband antennas embedded in the dielectric medium will be used to mea�
sure the radio emissions from the wake directly�

� ARRAKIS� Description of the Algorithm

A number of codes have been developed which solve the Maxwell equations in
dielectric media based on Finite Di�erence Time Domain 
FDTD� algorithms�
The results presented here are based on the ARRAKIS code developed at
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ANL� This code was designed to compute �elds in dielectric materials with
various properties beyond �  constant� and has been veri�ed by direct com�
parison with experiment and theory� 
Many other codes are now available both
commercially and in the public domain� e�g� AMOS� 
LLNL�� MAFIA	 
Darm�
stadt�� which could also be used to model Cherenkov radiation in dielectrics��

The original application of ARRAKIS was to model dielectric wake�eld
devices loaded with nonlinear media�
 The code uses the two�step Lax�Wendro�
technique��� which is found to yield good results for nonlinear problems in �uid
dynamics� The �exibility built into the code for handling dielectric properties
and �eld sources makes it useful for the problems described here even though
the dielectrics considered are linear� The algorithm is second order accurate
in both space and time� The �elds are pushed twice for each timestep� with
the intermediate �rst�order accurate values being discarded�

For the case of a rigid� relativistic and axially symmetric driving bunch in
an axially symmetric structure� Maxwell�s equations reduce to

�Dr

�s
 ��H�

�z
� 
���c��Er 
��

�Dz

�s
 ����
r� z� s� � �

r

�
rH��

�r
�
���c��Ez 
��

�H�

�s


�Ez

�r
� �Er

�z

��

where s  ct will be used as the time variable� and the relative permeability
� is taken as unity� � is the conductivity� Ohm�s law current terms proportional
to � allow for losses in the dielectric medium�

Note that in the following� �r� �z� and �s are half�step values� and the
discretized time variable sn  n�s� For a �eld component F �
fEr� Dr� Ez� Dz�H�g the notation �F �njk refers to the value of F at timestep n�
radial mesh line j� and longitudinal mesh line k�
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and for the full timestep
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The code is most useful for looking at boundary e�ects� especially for
FNAL� SLAC experiments where the characteristic dimensions are 	 
� so
the �elds share properties of both cavity �elds and Cherenkov radiation in an
unbounded medium� In the remainder of this paper we will consider simu�
lations of signals from coherent Cherenkov radiation related to the planned
FNAL�Main Injector test experiment�

� Simulations of the FNAL Experiment

To obtain some idea of the characteristics of the signals� we have developed a
slightly simpli�ed model of the planned Fermilab experiment to study the
charge excess development via radio emissions in a dielectric target� The
shower induced by a single ultrahigh energy cosmic ray will be simulated in
the experiment by dumping the proton beam from the Main Injector into an
instrumented dielectric radiator� While it would be most desirable to use ice
or some other pure dielectric material for the radiator� safety considerations
mandate the use of a concrete beam dump for the FNAL experiment� Detailed
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measurements of the real and imaginary parts of the radiator permittivity will
be made prior to the experiment�

The presence of boundaries in the radiator is another potential source of
di�culty in relating the laboratory results to the expected behavior of a large
volumeAntarctic ice based detector� We plan to use a radio absorbing material
on the exterior of the radiator to minimize internal re�ections of the Cherenkov
signal�

We use an ansatz for the charge excess development which qualitatively
reproduces the results of preliminary GEANT simulations��� The charge excess
is assumed to retain the shape of the initial proton bunch 
Gaussian with
� � cm�� but with its intensity modulated with a �Landau� envelope� with
maximum charge occurring at z  ��� cm� The results are normalized to �
pC maximum excess charge� 
There will be an additional contribution to the
signal from the initial proton pulse which is not considered here and which
would not be present in a shower induced by a single high energy cosmic ray�
we are currently examining the option of using a high�Z target upstream of
the Cherenkov radiator to reduce the contribution of the proton pulse to the
detected signal��

For these calculations the radiator is assumed to be a cylinder � m in
length and ���m in diameter� The inner region 
r 	 �� cm� consists of a lossless
dielectric with dielectric constant �  �� The outer region 
�� cm 	 r 	 �� cm�
is a lossy dielectric with the same permittivity as the inner region but with a
nonzero conductivity� which was adjusted to minimize the �elds re�ected from
the boundary� The computational volume was closed by assuming perfectly
conducting boundaries at the ends and outer radius of the radiator volume�

As an initial check on the calculations� �gure � shows the axial electric
�eld in the Cherenkov cone of the shower� The solid lines are drawn at
��C  arccos
��

p
��� It is comforting to observe that the time domain direct

integration of Maxwell�s equations does in fact reproduce the theoretical expec�
tations for the Cherenkov angle� We next attempted to optimize the properties
of the outer absorber layer by adjusting the imaginary part of the dielectric
constant to minimize the electric �eld outside the Cherenkov cone� Figure
� shows a plot of the computed ratio max
Ez
outside cone���max
Ez
inside
cone��� The optimum absorption is obtained with an absorber conductivity of
���� ���m���

Figure � shows the temporal evolution 
as a series of snapshots � ns apart�
of the axial current distribution at r  � for the shower charge excess resulting
from the interaction of a Main Injector bunch with the radiator� The absorber
conductivity was set to its optimized value� and the electric �elds vs time at
three probe or antenna points 
r  �� cm� z  ���� ���� ��� cm� due to
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Figure �	 Contours of constant Ez in the Cherenkov cone of a � ns� � nC electron bunch in a
dielectric of permittivity� �� The scale on the right shows the �eld strength in Statvolts�cm�
Solid lines are drawn at ��C �

coherent Cherenkov radiation from the shower charge excess were calculated�
The axial and radial time domain electric �elds at these locations are shown
in Figures ���� These signals approximate the induced electric �elds in ap�
propriately polarized pickup antennas placed at those points� although a more
realistic calculation would include both the transfer function of the antenna
and the spatial variation of the �elds across the �nite extent of the antenna�

Since the charge excess varies as the shower propagates� the observed sig�
nals will vary in intensity depending on the location of the pickup antennas
in the radiator� This suggests the possibility of performing a �tomographic�
reconstruction of the time evolution of the shower by comparison of observed
signals at multiple sample points with the numerical model�

Fourier spectra of the signals are shown in Figures ��	� The spectra show
that most of the signal power is contained in the �������� MHz frequency
range� The planned sensitivity range of the antennas to be used in the experi�
ment is � ���� ��� MHz� this bandwidth is seen to be an adequate match to
the signal spectrum�
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Figure �	 Ratio of maximum electric �eld inside the Cherenkov cone vs maximum �eld after
�rst bounce as a function of absorber conductivity�

� Summary and Future Directions

We have shown how concepts and techniques developed for advanced accel�
erator R�D can have direct applications to a class of high energy particle
detectors� FDTD simulation codes originally designed for accelerator prob�
lems will be useful for interpreting results of FNAL and SLAC laboratory
measurements of coherent radiation from the charge excess developed in elec�
tromagnetic showers�

Although for the most part the performance of the RICE detector can be
modeled using analytic expressions for Cherenkov radiation �elds in unbounded
media�� there are some aspects for which FDTD simulations could contribute
improved understanding� such as scattering o� cables and near �eld e�ects�
Sources are currently treated as rigid jz distributions but dynamics could be
included via Particle in Cell formulation� interfacing to particle physics simu�
lations like shower Monte Carlos should be simple� The code is also capable of
extension to unbounded media by matching to asymptotic �eld expressions at
computational boundaries�
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Figure �	 Snapshots at � � ns intervals of the charge excess distribution for ��� GeV protons
in concrete� The envelope is approximated by a Landau distribution� and the maximum
charge is normalized to � pC�
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Figure �	 Signals predicted for longitudinally polarized antennas at di�erent locations during
propagation of the shower�
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Figure �	 As in �gure �� for a radially polarized pickup antenna�
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Figure 
	 Fourier spectra of the signals from the longitudinally polarized antennas shown in
�gure �� The three curves �top to bottom� correspond to z����� ���� ��� cm respectively�

��



10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

f (GHz)

E
r (

V
/m

/G
H

z)

E
r
 spectra at different antenna positions

Figure �	 Fourier spectra of the signals from the radially polarized antennas shown in �gure
��The three curves �top to bottom� correspond to z����� ���� ��� cm respectively�
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